О сервисе WebGround

Ваша тема


Новости сайта

Литература

обложка книгиИнтернетика. Навигация в сложных сетях: модели и алгоритмы
Большакова Е.И., Клышинский Э.С., Ландэ Д.В., Носков А.А., Пескова О.В., Ягунова Е.В. Автоматическая обработка текстов на естественном языке и компьютерная лингвистикаАвтоматическая обработка текстов на естественном языке и компьютерная лингвистика (pdf)
Ягунова Е.В., Макарова О.Е., Антонова А.Ю., Соловьев А.Н. Разные методы компрессии в исследовании понимания новостного текстаРазные методы компрессии в исследовании понимания новостного текста (pdf)
Крылова И.В, Пивоварова Л.М., Савина А.В., Ягунова Е.В. Исследование новостных сегментов российской «снежной революции»: вычислительный эксперимент и интуиция лингвистовИсследование новостных сегментов российской «снежной революции»: вычислительный эксперимент и интуиция лингвистов (pdf)
Ягунова Е.В. Исследование перцептивной устойчивости фонем как элементов речевой цепиИсследование перцептивной устойчивости фонем как элементов речевой цепи (pdf)
Ягунова Е.В. Вариативность структуры нарратива и разнообразие стратегий пониманияВариативность структуры нарратива и разнообразие стратегий понимания (pdf)
Ягунова Е.В., Пивоварова Л.М. Экспериментально-вычислительные исследования художественной прозы Н.В. ГоголяЭкспериментально-вычислительные исследования художественной прозы Н.В. Гоголя (pdf)
Ягунова Е.В. Вариативность стратегий восприятия звучащего текстаВариативность стратегий восприятия звучащего текста (pdf)
Ягунова Е.В. Спонтанный нарратив у детей и у взрослыхСпонтанный нарратив у детей и у взрослых (pdf)
Ягунова Е.В. Исследование избыточности русского звучащего текстаИсследование избыточности русского звучащего текста (pdf)
Ягунова Е.В. Фонетические признаки опорных сегментов и восприятие русского текстаФонетические признаки опорных сегментов и восприятие русского текста (pdf)
Ягунова Е.В. Коммуникативная и смысловая структура текста и его восприятиеКоммуникативная и смысловая структура текста и его восприятие (pdf)
Ягунова Е.В. Где скрывается смысл бессмысленного текста?Где скрывается смысл бессмысленного текста? (pdf)
Ягунова Е.В. Эксперимент в психолингвистике: Конспекты лекций и методические рекомендацииЭксперимент в психолингвистике: Конспекты лекций и методические рекомендации (pdf)
Ягунова Е.В. Теория речевой коммуникацииТеория речевой коммуникации (pdf)
Антонова А.Ю., Клышинский Э.С., Ягунова Е.В. Определение стилевых и жанровых характеристик коллекций текстов на основе частеречной сочетаемостиОпределение стилевых и жанровых характеристик коллекций текстов на основе частеречной сочетаемости (pdf)
Ягунова Е.В. Эксперимент и вычисления в анализе ключевых слов художественного текстаЭксперимент и вычисления в анализе ключевых слов художественного текста (pdf)
Ягунова Е.В. Ключевые слова в исследовании текстов Н.В. ГоголяКлючевые слова в исследовании текстов Н.В. Гоголя (pdf)
Пивоварова Л.М., Ягунова Е.В. Информационная структура научного текста. Текст в контексте коллекцииИнформационная структура научного текста. Текст в контексте коллекции (pdf)
Савина А.Н., Ягунова Е.В. Исследование коллокаций с помощью экспериментов с информантамиИсследование коллокаций с помощью экспериментов с информантами (pdf)
Ягунова Е.В., Пивоварова Л.М. От коллокаций к конструкциямОт коллокаций к конструкциям (pdf)
Пивоварова Л.М., Ягунова Е.В. Извлечение и классификация терминологических коллокаций на материале лингвистических научных текстовИзвлечение и классификация терминологических коллокаций на материале лингвистических научных текстов (pdf)
Julia Kiseleva. Grouping Web Users based on Query LogGrouping Web Users based on Query Log (pdf)
Julia_Kiseleva_Unsupervised_Query_Segmentation_Using_Click_Data_and_Dictionaries_Information.pdfUnsupervised Query Segmentation Using Click Data and Dictionaries Information (pdf)
Четыре лекции о методе
Начала предметного анализа методов (на примере метода Ф.Бэкона)
Вариативность стратегий восприятия звучащего текста
Извлечение и классификация коллокаций на материале научных текстов. Предварительные наблюдения
Природа коллокаций в русском языке. Опыт автоматического извлечения и классификации на материале новостных текстов
Войтишек А. Повторы. Лирические рефреныПовторы. Лирические рефрены (pdf)
Войтишек А. Новое. Лирические рефреныНовое. Лирические рефрены (pdf)
Войтишек А. Всё об одном и том жеВсё об одном и том же. 500 лирических рефренов к 50-летию (pdf)
Войтишек А. Тысяча-часть-1Тысяча-часть-1 (pdf)
Войтишек А. Тысяча-часть-2Тысяча-часть-2 (pdf)
Войтишек А. АлфавитАлфавит (pdf)

8.3. Модель малых миров

 

Несмотря на огромные размеры некоторых сложных сетей, во многих  из них (и в WWW, в частности) существует сравнительно короткий путь между двумя любыми узлами – геодезическое расстояние. В 1967 г. психолог С. Милгран в результате проделанных масштабных экспериментов вычислил, что существует цепочка знакомств, в среднем длиной шесть, практически между двумя любыми гражданами США [113].

Д. Уаттс и С. Строгатц обнаружили феномен, характерный для многих реальных сетей, названный эффектом малых миров (Small Worlds) [146]. При исследовании этого феномена ими была предложена процедура построения наглядной модели сети, которой присущ этот феномен. Три  состояния этой сети представлены на рис. 34: регулярная сеть - каждый узел которой соединен с четырьмя соседними, та же сеть, у которой некоторые «ближние» связи случайным образом заменены «далекими» (именно в этом случае возникает феномен «малых миров») и случайная сеть, в которой количество подобных замен превысило некоторый порог.

  На рис. 35 приведены графики изменения средней длины пути и коэффициента кластеризации искусственной сети Д. Уаттса и С. Строгатца от вероятности установления «далеких связей» (в полулогарифмической шкале).

 

Рис. 34. Модель Уаттса-Строгатца

 

В реальности оказалось, что именно те сети, узлы которых имеют одновременно некоторое количество локальных и случайных «далеких» связей, демонстрируют одновременно эффект малого мира и высокий уровень кластеризации.               

WWW является сетью, для которой также подтвержден феномен малых миров. Анализ топологии веб, проведенный Ши Жоу (S. Zhou) и Р. Дж. Мондрагоном (R.J. Mondragon) из Лондонского университета, показал, что узлы с большой степенью исходящих гиперссылок имеют больше связей между собой, чем с  узлами с малой степенью, тогда как последние имеют больше связей с узлами с большой степенью, чем между собой. Этот феномен был назван "клубом богатых" (rich-club phenomenon). Исследование показало, что 27% всех соединений имеют место между всего 5% наибольших узлов, 60% приходится на соединение других 95% узлов с 5% наибольших и только 13% - это соединение между узлами, которые не входят в лидирующие 5%.

 

ris35-1

Рис. 35.  Динамика изменения длины пути и коэффициента кластерности в модели Уаттса-Строгатца в полулогарифмической шкале (ось 0Х – вероятность замены ближних связей далекими)

 

Эти исследования дают основания полагать, что зависимость WWW от больших узлов значительно существеннее, чем предполагалось ранее, т.е. она еще более чувствительна к злонамеренным атакам. С концепцией «малых миров» связан также практический подход, называемый «сетевой мобилизацией», которая реализуется над структурой «малых миров». В частности, скорость распространения информации благодаря эффекту «малых миров» в реальных сетях возрастает на порядки по сравнению со случайными сетями, ведь большинство пар узлов реальных сетей соединены короткими путями.

  Кроме того, сегодня довольно успешно изучаются масштабируемые, статические, иерархические "малые миры" и другие сети, исследуются их фундаментальные свойства, такие, как стойкость к деформациям и перколяция. Недавно было показано, что наибольшую информационную проводимость имеет особый класс сетей, называемых "запутанными" (entangled networks). Они характеризуются максимальной однородностью, минимальным расстоянием между любыми двумя узлами и очень узким спектром основных статистических параметров. Считается, что запутанные сети могут найти широкое применение в области информационных технологий, в частности, в новых поколениях веб, позволяя существенным образом снизить объемы сетевого трафика.