О сервисе WebGround

Ваша тема


Новости сайта

Литература

обложка книгиИнтернетика. Навигация в сложных сетях: модели и алгоритмы
Большакова Е.И., Клышинский Э.С., Ландэ Д.В., Носков А.А., Пескова О.В., Ягунова Е.В. Автоматическая обработка текстов на естественном языке и компьютерная лингвистикаАвтоматическая обработка текстов на естественном языке и компьютерная лингвистика (pdf)
Ягунова Е.В., Макарова О.Е., Антонова А.Ю., Соловьев А.Н. Разные методы компрессии в исследовании понимания новостного текстаРазные методы компрессии в исследовании понимания новостного текста (pdf)
Крылова И.В, Пивоварова Л.М., Савина А.В., Ягунова Е.В. Исследование новостных сегментов российской «снежной революции»: вычислительный эксперимент и интуиция лингвистовИсследование новостных сегментов российской «снежной революции»: вычислительный эксперимент и интуиция лингвистов (pdf)
Ягунова Е.В. Исследование перцептивной устойчивости фонем как элементов речевой цепиИсследование перцептивной устойчивости фонем как элементов речевой цепи (pdf)
Ягунова Е.В. Вариативность структуры нарратива и разнообразие стратегий пониманияВариативность структуры нарратива и разнообразие стратегий понимания (pdf)
Ягунова Е.В., Пивоварова Л.М. Экспериментально-вычислительные исследования художественной прозы Н.В. ГоголяЭкспериментально-вычислительные исследования художественной прозы Н.В. Гоголя (pdf)
Ягунова Е.В. Вариативность стратегий восприятия звучащего текстаВариативность стратегий восприятия звучащего текста (pdf)
Ягунова Е.В. Спонтанный нарратив у детей и у взрослыхСпонтанный нарратив у детей и у взрослых (pdf)
Ягунова Е.В. Исследование избыточности русского звучащего текстаИсследование избыточности русского звучащего текста (pdf)
Ягунова Е.В. Фонетические признаки опорных сегментов и восприятие русского текстаФонетические признаки опорных сегментов и восприятие русского текста (pdf)
Ягунова Е.В. Коммуникативная и смысловая структура текста и его восприятиеКоммуникативная и смысловая структура текста и его восприятие (pdf)
Ягунова Е.В. Где скрывается смысл бессмысленного текста?Где скрывается смысл бессмысленного текста? (pdf)
Ягунова Е.В. Эксперимент в психолингвистике: Конспекты лекций и методические рекомендацииЭксперимент в психолингвистике: Конспекты лекций и методические рекомендации (pdf)
Ягунова Е.В. Теория речевой коммуникацииТеория речевой коммуникации (pdf)
Антонова А.Ю., Клышинский Э.С., Ягунова Е.В. Определение стилевых и жанровых характеристик коллекций текстов на основе частеречной сочетаемостиОпределение стилевых и жанровых характеристик коллекций текстов на основе частеречной сочетаемости (pdf)
Ягунова Е.В. Эксперимент и вычисления в анализе ключевых слов художественного текстаЭксперимент и вычисления в анализе ключевых слов художественного текста (pdf)
Ягунова Е.В. Ключевые слова в исследовании текстов Н.В. ГоголяКлючевые слова в исследовании текстов Н.В. Гоголя (pdf)
Пивоварова Л.М., Ягунова Е.В. Информационная структура научного текста. Текст в контексте коллекцииИнформационная структура научного текста. Текст в контексте коллекции (pdf)
Савина А.Н., Ягунова Е.В. Исследование коллокаций с помощью экспериментов с информантамиИсследование коллокаций с помощью экспериментов с информантами (pdf)
Ягунова Е.В., Пивоварова Л.М. От коллокаций к конструкциямОт коллокаций к конструкциям (pdf)
Пивоварова Л.М., Ягунова Е.В. Извлечение и классификация терминологических коллокаций на материале лингвистических научных текстовИзвлечение и классификация терминологических коллокаций на материале лингвистических научных текстов (pdf)
Julia Kiseleva. Grouping Web Users based on Query LogGrouping Web Users based on Query Log (pdf)
Julia_Kiseleva_Unsupervised_Query_Segmentation_Using_Click_Data_and_Dictionaries_Information.pdfUnsupervised Query Segmentation Using Click Data and Dictionaries Information (pdf)
Четыре лекции о методе
Начала предметного анализа методов (на примере метода Ф.Бэкона)
Вариативность стратегий восприятия звучащего текста
Извлечение и классификация коллокаций на материале научных текстов. Предварительные наблюдения
Природа коллокаций в русском языке. Опыт автоматического извлечения и классификации на материале новостных текстов
Войтишек А. Повторы. Лирические рефреныПовторы. Лирические рефрены (pdf)
Войтишек А. Новое. Лирические рефреныНовое. Лирические рефрены (pdf)
Войтишек А. Всё об одном и том жеВсё об одном и том же. 500 лирических рефренов к 50-летию (pdf)
Войтишек А. Тысяча-часть-1Тысяча-часть-1 (pdf)
Войтишек А. Тысяча-часть-2Тысяча-часть-2 (pdf)
Войтишек А. АлфавитАлфавит (pdf)

3.2.6. Выявление новых событий

 

Как правило, задача выявления новых событий из потока сообщений предполагает, что на вход соответствующего программно-технологического комплекса последовательно поступают новые документы. Они могут поступать как непосредственно от средств сканирования, так и будут отобраны по тематическому запросу. При этом зачастую остается открытым прогнозный вопрос, какое событие в данный момент освещено пока мало, но в  дальнейшем получит большой резонанс. Этот вопрос связан с общей задачей нахождения исключений или аномалий, т.е. объектов, которые своими характеристиками значительно выделяются из общей массы (хотя в дальнейшем могут породить множество себе подобных). Для решения этой проблемы было предложено несколько путей.

   Подход Г. Солтона в определении повых событий  заключается в использовании векторно-пространственного представления документов и традиционных методов кластеризации. При этом малый вес приписывается высокочастотным словам из массива документов, что вполне укладывается в модель TF IDF. Документы при этом подходе обрабатываются последовательно в соответствии с таким алгоритмом:

1.     Первому рассматриваемому документу ставится в соответствие первый  кластер. Каждый кластер представляется вектором термов (ключевых слов), входящих в документы этого кластера. Нормированный каким-то образом вектор термов принято называть центроидом. Иногда центроидом называют документ, самый близкий по некоторому критерию к вектору термов данного кластера, что не меняет сути данного алгоритма.

2.     Каждый следующий документ сравнивается с центроидами существующих кластеров (для этого вводится некоторая мера близости).

3.     Если документ достаточно близок к некоторому кластеру, то он приписывается этому кластеру, после чего происходит пересчет соответствующего центроида.

4.     Если документ не близок к существующим кластерам, то происходит формирование нового кластера, которому приписывается данный документ.

5.     Временной диапазон рассматриваемых документов принято называть «окном наблюдения». Кластеры, все документы которых выходят за пределы окна наблюдения, выносятся за рамки рассмотрения.

В результате работы алгоритма каждому новому возникающему кластеру соответствует новое событие, отражаемое в документах данного кластера.

В сответствии с подходом, предлагаемым Р. Папка [120], новые события выявляются из документов, не удовлетворяющих запросам пользователей, построенным с учетом уже известных событий. Алгоритм выявления новых событий заключается в следующем:

1.     Формируются запросы по известным темам (при этом используются технологии Text Mining – выявления и выбора понятий из текстов сообщений).

2.     Новый поступающий документ сравнивается с существующими запросами.

3.     Если документ не соответствует запросам, то он ассоциируется с новым событием.

4.     В систему включается новый запрос, соответствующий данному документу.

В реально работающих системах интеграции новостей, как правило, применяются многопараметрические подходы, учитывающие, не только информацию из текста новостей, но и время их публикации, уровень источника, соответствие тематикам пользователей [94]. Один из таких  подходов к выявлению  новых событий [31] базируется на  таких предположениях, относящихся к публикации соответствующих информационных сообщений:

а) минимальное время, прошедшее с момента публикации;

б) минимизация веса термов, входящих в документ, по частотному словарю, сформированному на основании анализа большого массива  опубликованных документов (это условие, аналогичное максимизации параметра IDF в векторно-пространственной модели);

в) максимизация суммарного веса термов, входящих в документ, по плюс-словарю (содержащему важные для содержания новостей слова типа «теракт», «конфликт», «сенсация» и т.п.);

г) учет ранга «авторитетности» источника (как правило, определяемый экспертами).

  Введем следующие обозначения:

 – величина окна наблюдения потока новостей;

 – текущий документ;

 – последний документ из окна наблюдения;

й документ;

PlusDic – плюс словарь;

 – мера близости документа  документу ;

 – мера близости документа  «плюс словарю»;

  ранг источника, соответствующего -му документу.

Мера близости  может быть определена традиционно для векторно-пространственой модели. При этом может быть дано еще одно определение меры близости документов, использующее аппарат условных вероятностей, а именно, вероятность того, что случайно выбранное слово  входит в документ  при условии, что оно входит в документ , умноженную на вероятность вхождения данного слова в документ :

Параметр новизны  документа , учитывающий условия а) - г), может быть записан следующим образом:

 

Задачи выявления, отслеживания и группировки событий на основе анализа новостей активно обсуждаются, они имеют большое практическое значение имеенно сегодня, когда режим онлайн-доступа к системам интеграции новостей существенно облегчен.