О сервисе WebGround

Ваша тема


Новости сайта

Литература

обложка книгиИнтернетика. Навигация в сложных сетях: модели и алгоритмы
Большакова Е.И., Клышинский Э.С., Ландэ Д.В., Носков А.А., Пескова О.В., Ягунова Е.В. Автоматическая обработка текстов на естественном языке и компьютерная лингвистикаАвтоматическая обработка текстов на естественном языке и компьютерная лингвистика (pdf)
Ягунова Е.В., Макарова О.Е., Антонова А.Ю., Соловьев А.Н. Разные методы компрессии в исследовании понимания новостного текстаРазные методы компрессии в исследовании понимания новостного текста (pdf)
Крылова И.В, Пивоварова Л.М., Савина А.В., Ягунова Е.В. Исследование новостных сегментов российской «снежной революции»: вычислительный эксперимент и интуиция лингвистовИсследование новостных сегментов российской «снежной революции»: вычислительный эксперимент и интуиция лингвистов (pdf)
Ягунова Е.В. Исследование перцептивной устойчивости фонем как элементов речевой цепиИсследование перцептивной устойчивости фонем как элементов речевой цепи (pdf)
Ягунова Е.В. Вариативность структуры нарратива и разнообразие стратегий пониманияВариативность структуры нарратива и разнообразие стратегий понимания (pdf)
Ягунова Е.В., Пивоварова Л.М. Экспериментально-вычислительные исследования художественной прозы Н.В. ГоголяЭкспериментально-вычислительные исследования художественной прозы Н.В. Гоголя (pdf)
Ягунова Е.В. Вариативность стратегий восприятия звучащего текстаВариативность стратегий восприятия звучащего текста (pdf)
Ягунова Е.В. Спонтанный нарратив у детей и у взрослыхСпонтанный нарратив у детей и у взрослых (pdf)
Ягунова Е.В. Исследование избыточности русского звучащего текстаИсследование избыточности русского звучащего текста (pdf)
Ягунова Е.В. Фонетические признаки опорных сегментов и восприятие русского текстаФонетические признаки опорных сегментов и восприятие русского текста (pdf)
Ягунова Е.В. Коммуникативная и смысловая структура текста и его восприятиеКоммуникативная и смысловая структура текста и его восприятие (pdf)
Ягунова Е.В. Где скрывается смысл бессмысленного текста?Где скрывается смысл бессмысленного текста? (pdf)
Ягунова Е.В. Эксперимент в психолингвистике: Конспекты лекций и методические рекомендацииЭксперимент в психолингвистике: Конспекты лекций и методические рекомендации (pdf)
Ягунова Е.В. Теория речевой коммуникацииТеория речевой коммуникации (pdf)
Антонова А.Ю., Клышинский Э.С., Ягунова Е.В. Определение стилевых и жанровых характеристик коллекций текстов на основе частеречной сочетаемостиОпределение стилевых и жанровых характеристик коллекций текстов на основе частеречной сочетаемости (pdf)
Ягунова Е.В. Эксперимент и вычисления в анализе ключевых слов художественного текстаЭксперимент и вычисления в анализе ключевых слов художественного текста (pdf)
Ягунова Е.В. Ключевые слова в исследовании текстов Н.В. ГоголяКлючевые слова в исследовании текстов Н.В. Гоголя (pdf)
Пивоварова Л.М., Ягунова Е.В. Информационная структура научного текста. Текст в контексте коллекцииИнформационная структура научного текста. Текст в контексте коллекции (pdf)
Савина А.Н., Ягунова Е.В. Исследование коллокаций с помощью экспериментов с информантамиИсследование коллокаций с помощью экспериментов с информантами (pdf)
Ягунова Е.В., Пивоварова Л.М. От коллокаций к конструкциямОт коллокаций к конструкциям (pdf)
Пивоварова Л.М., Ягунова Е.В. Извлечение и классификация терминологических коллокаций на материале лингвистических научных текстовИзвлечение и классификация терминологических коллокаций на материале лингвистических научных текстов (pdf)
Julia Kiseleva. Grouping Web Users based on Query LogGrouping Web Users based on Query Log (pdf)
Julia_Kiseleva_Unsupervised_Query_Segmentation_Using_Click_Data_and_Dictionaries_Information.pdfUnsupervised Query Segmentation Using Click Data and Dictionaries Information (pdf)
Четыре лекции о методе
Начала предметного анализа методов (на примере метода Ф.Бэкона)
Вариативность стратегий восприятия звучащего текста
Извлечение и классификация коллокаций на материале научных текстов. Предварительные наблюдения
Природа коллокаций в русском языке. Опыт автоматического извлечения и классификации на материале новостных текстов
Войтишек А. Повторы. Лирические рефреныПовторы. Лирические рефрены (pdf)
Войтишек А. Новое. Лирические рефреныНовое. Лирические рефрены (pdf)
Войтишек А. Всё об одном и том жеВсё об одном и том же. 500 лирических рефренов к 50-летию (pdf)
Войтишек А. Тысяча-часть-1Тысяча-часть-1 (pdf)
Войтишек А. Тысяча-часть-2Тысяча-часть-2 (pdf)
Войтишек А. АлфавитАлфавит (pdf)

3.2.3. Автоматическое реферирование

 

Автоматическое реферирование (Automatic Text Summarization) -  это составление коротких изложений материалов, аннотаций или дайджестов, т.е. извлечение наиболее важных сведений из одного или нескольких документов и генерация на их основе лаконичных отчетов [55].

Существует много путей решения этой задачи, которые довольно четко подразделяются на два направления - квазиреферирование и краткое изложение содержания первичных документов. Квазиреферирование основано на экстрагировании фрагментов документов - выделении наиболее информативных фраз и формировании из них квазирефератов.

В рамках квазиреферирования выделяют три основных направления, которые в современных системах применяются совместно:

-         статистические методы, основанные на оценке информативности разных элементов текста по частоте появления, которая служит основным критерием информативности слов, предложений или фраз;

-         позиционные методы, которые опираются на предположение о том, что информативность элемента текста зависит от его позиции в документе;

-         индикаторные методы, основанные на оценке элементов текста, исходя из наличия в них специальных слов и словосочетаний - маркеров важности, которые характеризуют их содержательную значимость. 

Определение веса фрагментов (предложений или абзацев) исходного текста выполняется в соответствии с  алгоритмами, которые стали  уже традиционными. Общий вес текстового блока при этом определяется по формуле:

         .

Слагаемое Location определяется расположением блока в тексте и зависит от того, где появляется данный фрагмент - в начале, в середине или в конце, а также  используется ли он в наиболее важных с содержательной точки зрения разделах текста, например, в выводах. Ключевые фразы (KeyPhrase) представляют собой конструкции-маркеры, которые резюмируют содержание, типа "в заключение", "в данной статье", "в результате анализа" и т.п. Весовое значение слагаемого KeyPhrase может зависеть также от оценочного термина, например, "отличный". Статистический вес текстового блока (StatTerm) вычисляется как нормированная по длине блока сумма весов входящих в него слов и словосочетаний.

После выявления определенного (задаваемого, как правило, коэффициентом необходимого сжатия) количества текстовых блоков с наивысшими весовыми коэффициентами, они объединяются для построения квазиреферата.

Преимущество методов квазиреферирования заключается в простоте их реализации. Однако выделение текстовых блоков, не учитывающее взаимоотношений между ними, часто приводит к формированию бессвязных рефератов. Некоторые предложения могут оказаться пропущены, либо в них могут встречаться слова или фразы, которые невозможно понять без предшествующего пропущенного текста. Попытки решить эту проблему, в основном сводятся к исключению таких предложений из рефератов. Реже делаются попытки разрешения ссылок с помощью методов лингвистического анализа.

Краткое изложение содержания первичных документов основывается на выделении из текстов наиболее важной информации и порождении новых текстов, содержательно обобщающие первичные документы. В отличие от частотно-лингвистических методов, обеспечивающих квазиреферирование, подход, основанный на базах знаний, опирается на автоматизированный качественный контент-анализ, состоящий, как правило, из трех основных стадий. Первая - сведение исходной текстовой информации к заданному числу фрагментов - единиц значения, которыми являются категории, последовательности и темы. На второй стадии производится поиск регулярных связей между единицами значения, после чего начинается третья стадия - формирование выводов и обобщений. На этой стадии создается структурная аннотация, представляющая содержание текста в виде совокупности концептуально связанных смысловых единиц.

Семантические методы формирования рефератов-изложений предполагают два основных подхода: метод синтаксического разбора предложений и методы, опирающиеся на понимание естественного языка. В первом случае используются деревья разбора текста. Процедуры автоматического реферирования манипулируют непосредственно деревьями, выполняя перегруппировку и сокращение ветвей на основании сответствующих критериев. Такое упрощение обеспечивает построение реферата - структурную "выжимку" исходного текста.

Второй подход основывается на системах искусственного интеллекта, в которых также на этапе анализа выполняется синтаксический разбор текста, но синтаксические деревья не порождаются. В этом случае формируются семантические структуры, которые накапливаются в виде концептуальных подграфов в базе знаний. В частности, известны модели, позволяющие производить реферирование текстов на основе психологических ассоциаций сходства и контраста. В базах знаний избыточная и не имеющая прямого отношения к тексту информация устраняется путем отсечения некоторых подграфов. Затем информация подвергается агрегированию методом слияния оставшихся графов или их обобщения. Для выполнения этих преобразований выполняются манипуляции логическими предположениями, выделяются определяющие шаблоны в текстовой базе знаний. В результате преобразования формируется концептуальная структура текста - аннотация, т.е. концептуальные "выжимки" из текста.

Многоуровневое структурирование текста с использованием семантических методов позволяет подходить к решению задачи реферирования путем:

-         удаления малозначащих смысловых единиц. Преимуществом метода является гарантированное сохранение значащей информации, недостатком - низкая степень сжатия, т.е. сокращения объема реферата по сравнению с первичными документами;

-         сокращения смысловых единиц - замена их основной лексической единицей, выражающей основной смысл;

-         гибридного способа, заключающегося в уточнении реферата с помощью статистических методов, с использованием семантических классов, особенностей контекста и синонимических связей.

Существуют общедоступные программы квазиреферирования, например, в состав  сервисных возможностей системы Microsoft Word входит режим «Автореферат».