
Unsupervised Query Segmentation Using Click Data 

and Dictionaries Information 
Julia Kiseleva 

Saint-Petersburg State University
i
 

 julianakiseleva@gmail.com  

ABSTRACT 

We describe results of experiments with an unsupervised framework for query segmentation, 

transforming keyword queries into structured queries. The resulting queries can be used to more 

accurately search product databases, and potentially improve result presentation and query 

suggestion. The key to developing an accurate and scalable system for this task is to train a query 

segmentation or attribute detection system over labeled data, which can be acquired 

automatically from query and click-through logs. The main contribution of our work is a 

improving method to automatically acquire such training data – resulting in significantly higher 

segmentation performance, compared to previously reported methods. 
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1. INTRODUCTION 
This work focuses on the problem of detecting and labeling product attribute values in keyword 

queries to enable structured querying of product databases, more effective ranking and filtering 

of the results, and potentially improving the result presentation. The main contribution of this 

work is an improved compare to [4] unsupervised approach to this problem that trains the 

extraction/segmentation system based on only the product click data.  The key idea is to 

automatically and robustly align the query terms to attribute terms via click data, resolve 

ambiguities using frequency and similarity statistics, and then use the resulting automatically 

generated alignments to train a text segmentation of information extraction system.   

This improved unsupervised approach has multiple advantages over the previous supervised and 

semi-supervised methods [1]: 

 Our method requires no manual labeling, which can be time consuming to obtain for large 

number of domains 

 Our method can be constantly updated to reflect changes in interests and product databases. 

 We can cleanly trade-off different performance characteristics by controlling the parameters 

of the matching (automatic labeling) process.  

The results, over six categories in the Computer and Electronics domain over real data collected 

from a leading online comparison shopping site, demonstrate the accuracy and scalability of our 

approach. 

2. RELATED WORK 
There are a good number about semi-supervised or unsupervised methods for Conditional 

Random Fields (CRF) have been published in recent years. This works used additional resources 

for semi- or un-supervised information extraction. 
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For example in [2], a database was used to create an artificially-annotated training data to train a 

language model for Hidden Markov Model (HMM). A similar approach was published in [3] for 

CRF. Moreover in [5] was proved that adding dictionary as a feature for HMM. This method was 

shown as effective. In [1] additionally for databases was used clicked data for semi-supervised 

CRF. 

Our previous work [4] was done using only clicked data. In this work we combined this two 

approaches and used click data and dictionary information for decreasing ambiguity in the result 

and improving quality. We also extended ground data  

3. SYSTEM OVERVIEW 
We developed labeling systems with overall workflow which has two main parts: 

 Part 1: unsupervised training over automatic labeling.  

 Part 2: run-time prediction using the trained model and automatically labeled query data.  

The system has three main algorithmic components that we optimized:  

 Automatic labeling (Section 4);    

 Training the segmentation system (Section 5); 

 Predicting (applying) segmentation for new queries (Section 6). 

After describing the system (Sections 4-5), we introduce our experimental setting including data 

base, metric and result (Section 6). 

4. AUTOMATIC QUERY LABELING 

Labeling approach applies to the following problem setup. Shoppers run queries against a 

product search engine (e.g. „sony vaio 4gb laptop‟,’sata 200gb’ etc) and clicks on product .These 

products have a name and textual description, as well as a set of structured attributes represented 

as name-value pairs (e.g. name: „sony vaio 2.0 ghz intel core duo notebook‟; set of attributes: 

type: „Notebook‟, model: „Vaio‟, brand: „Sony‟, processor speed: ‟2.0ghz‟, etc). The prediction 

task is to automatically label each query token with a corresponding product attribute. To 

generate training data automatically, we leverage user interactions with the search engine, i.e. we 

record clicks on individual products in response to a query, assuming that users tend to click 

more frequently on products that are highly relevant to the query. Using the obtained query-

product pairs, we explored three token labeling methods to generate training data. We explored 

two methods to generate training data (4.2 and 4.3).  

4.1 Tokenization 

Because users usually do not care about format of typing query, we should normalize data. The 

one of issues is tokens related to memory size, hard drive capacity, weight and so on. This issue 

because one user can write it “2 gb” other “2gb”. To avoid ambiguity we tried two approaches: 

1. “Broken tokenization” – when we put space between pairs like digit and then not digit 

(we do it as well for database‟s data). We notice that main trouble with this approach 

that we broke models like “500d” as well. At the end get “500 d” and it to separate 

words, and “confusing part” is that “500” could be “capacity” as well. 

2. “Join tokenization” – when we remove space between pairs like digit and not digit. And 

it works well because now CRF-model obtained mixed token n-gram of this word. This 

approach improves precision of matching for a few percents and does not hurt recall. 

4.2 Baseline Similarity 

As a baseline method, we use method proposed in [4]. This method use cosine similarity to 

quantify the match degree between a token and an attribute value string. The weights of the terms 



are computed using a modified tf*idf weighting scheme. The modification is to define a 

“document” as the combination of all tokens for each attribute, combined across all the clicked 

products. For example, a Brand “document” will contain all observed tokens and their counts 

within the Brand attribute across all laptops, e.g., <„dell‟:14, „lenovo‟:9, „asus‟:7>. The 

actual tf and idf values are computed as usual, and normalized by the “document” length. As a 

result, every token is associated with a weight ranging from 0 to 1.  

Then empirically was found the weight which should show best matched result. By best we mean 

a reasonable combination between precision and recall. For this we with step 0.1 were counted 

Precision, Recall for different weight. And it was detected that the best combination of metrics 

we got with weight 0.3. Therefore a training set supposed to be a collection of queries where 

every query has weight over that 0.3. 

4.3 Similarly 

We improve baseline by: 

- Identifying synonyms across attributes  (section 4.3.1) 

- Decrease rarefaction in the data using “updating algorithm” (section 4.3.2) 

- Use dictionary for improve accuracy of matching (section 4.3.3) 

4.3.1  Synonyms in attributes 

We obtain that our set of attributes from matched data. After analyzing we noticed that there are 

attributes similar to each other. E.g. attributes “release-year” and “release data” should be 

equivalent.  To detect such kind of synonyms in data base we build dictionary for every attribute 

in data base and measure how close they are to each other using cosine similarity. Empirically 

we choose threshold which identifies that 2 attributes is equivalent. This threshold equals 0.7. By 

introducing synonyms we decreased number of attributes from 65 to 41. It significantly reduces 

attribute space.  

4.3.2  Updating algorithm  

In matching algorithms if we can‟t find any attribute related to particular token we assign 

“unknown” label to it and it has weight equals to zero. Thereafter we notice that the matched data 

is sparse. By sparse we mean that a sufficient amount of queries contains “unknown” token 

inside. It happens because some description for product could not contain information about 

some obvious token. E.g. for token “notebook” has labeled as “laptop type” for significant part 

of queries but some product description does not contain this token. At the end we obtained a lot 

of “unknown” label and it decrease our training set.  

To avoid it we introduce follow procedure: 

1. During the matching we collect attributes with set of belonging tokens.  

2. For every token calculate a probability to belong to particular attribute.  

3. Then do follows: 

 if found “unknown” token check collection if it belongs  to any of attributes 

collection 

 if yes : pick the attributes with highest probability 

As weight for such updated labels we assign a frequency particular label in the collection. 

4.3.3  Use dictionary for improve matching 

According our experience one of the most important attribute is “brand”. During the analyzing 

we obtained such problem as brand could have informal synonyms and we could not identify
 
it 

from database. For example “hp” is synonym for “hewlett packard”, “mac” is synonym for 



“mackintosh” and so on. To avoid it we use brands dictionary with synonyms during the 

matching. 

5. TRAINING SEGMENTATION SYSTEM 

5.1 Baseline Segmentation System 

As a baseline for segmentation we use following algorithm: 

1. Build dictionary from database for every attribute. 

2. Calculate posterior probability for every token in this dictionary. 

3. Find most likely attribute for every given token in the query. 

5.2 CRF Segmentation System 

Our goal is to use the automatically labeled query data, obtained as described in Section 4, to 

train a model to segment queries into attribute-value pairs. 

5.2.1  Model  

We choose the Conditional Random Field (CRF) model, similar to the one described in reference 

[1]. Specifically, we train a separate CRF model for each product category (e.g., we train 

separate models for the “laptops”, and “laptop accessories” category), leveraging the fact that 

every product in our training set is already classified into a distinct category.  

In the current system we used the Mallet k  implementation for CRF 

5.2.2 Attributes 

The attributes correspond to the set of target attributes, selected as the union of all attribute 

names matched automatically in Section 4. Then reduce the set of attributes by identifying 

synonyms in this set of attributes (Section 4.4.1). Following ideas from information extraction, 

we use two types of labels for each attribute, _begin and _continue. For example, the labels for 

the sequence of tokens „Hewlett”, “Packard” are “brand_begin” and “brand_continue” 

respectively.  

5.2.3  General Features 

Our segmentation features include Boolean features that represent the presence or absence of 

token unigrams and bigrams; regular expressions that match different token types (e.g. numbers 

and words), as well as token context information (e.g. features of the tokens preceding or 

following the current token).  

5.2.4 Dictionary Features 

To leverage dictionary information to CRF we add follows extra feature: 

1) As we discuss before “brand” is important attribute. With purpose to identify “brand” more 

easily we add feature which shows is it brand or not. To implement it we use brand dictionary 

(Section 4.4.1) 

2) We created a dictionary for every attribute (Section 5.1) where every attribute is associated 

with the set of tokens and given token is associated with posterior probability to belong to 

particular attribute. This information for token we as feature for CRF training.  

6. EXPERIMENTAL EVALUATION 
The data for the experiments were generated from a sample of the click logs from the product 

search engine, sampled from the Computers category over a period of approximately one month 

in late 2009. This included six sub-categories: Laptops (L), Software (S), Memory Cards (MC), 

Hard Drives (HD), Printers (P), and Laptop Accessories (LA). A random sample of these queries 

(120 queries from different subcategories) were manually labeled to assign appropriate attribute 

values to each query token if there was one. 



6.1 Evaluation Metrics 

We use the following metrics for our task:  

Precision:  fraction of tokens predicted correctly micro-averaged across queries.  

Recall: fraction of all labeled tokens that were correctly predicted micro-averaged across queries.  

6.2 Ground Truth 

As ground truth we choose 350 unique queries from the log which have length more than 1 token 

and less than 6 tokens. Compare to [4] where used only 100 queries. 

Labeling ground truth was made by qualified Mechanical Turk Users j . 

6.3 Matching Evaluation 

We evaluate matching for different combinations:  

1. Use only brand dictionary for improving (DA) 

2. Use only “Updating algorithm” (UA) 

3. Use DA and UP at the same time. 

Table 1: Combined Query Statistics for Matching for All categories 

 

Table 1 shows that inventing DA and Up together significantly increase training set for 

prediction model. 

Table 2 shows us correlation between increasing training set and improving matching accuracy. 

We considerably improve recall by adding more data in training set. 

Table2: Overall Matching Result trough all categories 

 

 

 

 

 

 

6.4 Segmentation Evaluation 

We use the automatically generated training data from Table 1 with τ=0.3, to train the CRF 

model with the features described in section 5.2.3 and 5.2.4. The model was evaluated on 

manually labeled queries that were not included in the training data. The results, averaged over 

all subcategories. The accuracy for individual categories ranged from 0.89 to 0.69, with higher 

performance for more popular (L, S, M, HD), and lower for sparse categories with less training 

data (P, LA). 

Table3: Overall Segmentation Result trough all categories based on manual labels and 

similarity threshold=0.3 

Method  Query #  Matched 

(t=0.7)  

Matched 

(t=0.3)  

Time 

period  

Category # 

Baseline   

13631 

1118  2714   

3 

weeks  

 

6  
Brand dictionary 1906 3102 

Updating  algorithm 2006 3936 

Overall  2903  4174  

 

Method  cosine  Precision  Recall  

Baseline  0.3  0.80  0.27  

0.7  0.94  0.16  

 Similarity with Dictionary 

and Update 

0.3  0.84  0.45  

0.7  0.97  0.3  



Method  Precision  Recall  

Baseline (Dictionary)   0.55   0.41  

Segmentation (CRF)    0.79    0.63  

 

Table 3 shows results for dictionary approach described in Section 5.1 and results for CRF 

model trained on set which was described in Section 4 with features in Section 5.2. Compare to 

our previous result [4] we significantly extend test improve precision. Before ground truth was 

100 queries, now – 350 qurties.  

7. CONCLUSIONS AND FUTURE WORK 
We presented completely unsupervised method for query segmentation. Furthermore, we present 

a practical method on how to obtain derived attributes by leverage user click data and domain 

database in context of tagging commerce search queries. Evaluation shows that our unsupervised 

method is effective. In future we would like to improve training set quality and extend CRF 

approach. 
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